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Abstract: 

 

This article deals with the development and comparison of different vehicle models to be used in vehicle 

dynamics control of an electric all-wheel drive vehicle in the future. The aim is to verify the accuracy of 

lateral and longitudinal motions of selected vehicle models based on two different approaches. Using 

first principles describing basic vehicle dynamics, single and the twin track vehicle models are derived 

in form of systems of nonlinear differential equations. Using experimental identification, five vehicle 

state space models of orders are identified based on measurements on a real vehicle. The experiments 

performed were three different test maneuvers. Vehicle models are then compared using the measured 

data with the simulation results in MATLAB. 
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1  Introduction 

 

A significant challenge in electric vehicles with all-wheel drive is the way how to control 

whole powertrain to improve vehicle dynamics while increasing safety and stability. This can be 

achieved by various control strategies with different complexity. Each of these strategy is based on 

physical laws and mathematical descriptions of vehicle motion – vehicle model. 

A wide range of simplified vehicle dynamics models is available in the literature, which are 

able to accurately represent basics of the force and moment dynamics [1]. However, in case of critical 

vehicle situations, it is essential to assume a more descriptive model considering the couplings be-

tween vehicle components. The application of multi-body dynamics for the analysis of vehicle han-

dling problems was firstly discussed in [2], which was later applied in several complex multibody 

dynamics models in [3] and [4]. A complete multi-body model of the vehicle including the suspen-

sion geometry and tire characteristics was introduced in [5]. Simultaneously several multi DOF non-

linear multi-body dynamic models that can accurately represent almost all physical characteristics of 

the vehicle including suspension and tire dynamics has been proposed in [6] and [7]. But all these 

models have huge demands in computation power. To scale down the computational requirement, an 

intermediate multi-body model was proposed by authors of [8], which was well accepted in automo-

tive industry for less critical applications. 

 However, these models are rarely used in their raw form, because of demand of simultane-

ously solve the combined differential or algebraic system of equations, which brings convergence 

issues with an even more computational requirements to the system. 
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Therefore a dominant amount of vehicle control strategies, for instance, the side slip control, 

yaw control, and trajectory control are based on a linearized version of vehicle operating condition 

known as the single track model. Example of step by step derivation of such a model can be found 

in [9]. In this model the vehicle is considered in its most simplified form, neglecting tire’s side slid-

ing, all lifting, rolling and pitching motion and assuming constant mass distribution on the axles. Of 

course, these simplifications come at the cost of reduced accuracy in the model as compared with 

actual vehicle motion, but model outputs still fits reality enough for purposes of vehicle control. 

 

 

2  Vehicle Model Development 
 

In vehicle planar movement analysis, with neglecting the internal forces, vehicle has 6 degrees 

of freedom (DOF). Number of DOF can be additionally reduced by several assumptions when con-

sidering only longitudinal, lateral and yaw motion. With used simplifications, in next chapters we 

consider vehicle of 3 DOF. 

 

A  Single track model derivation 

 

Single-track model (Fig.1) describes well basic drive processes without much effort in mod-

eling and parametrization. In this paper for single track model representation, we will take derivation 

of model from work of Efremov [9]. 

 

This model is used to describe planar vehicle motion, with next simplifications: 

 

• All lifting, rolling, and pitching motion is neglected. 

• Vehicle mass is concentrated at the center of gravity. 

• Front and rear tires are represented as one single tire on each axle. 

   Imaginary contact points of tires and surface are assumed to lie along the center of axles.  

• Pneumatic trail and aligning torque resulting from a side-slip angle of a tire are neglected. 

• Mass distribution on the axles is assumed to be constant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Single track model. 
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With assumed simplifications above, for considered vehicle three equations of motion exists: 

 𝐹𝑥 =  −𝑚𝑣(𝛽̇ + 𝛹̇) sin(𝛽) + 𝑚𝑣̇ cos(𝛽) (1) 

 𝐹𝑦 =  −𝑚𝑣(𝛽̇ + 𝛹̇) cos(𝛽) + 𝑚𝑣̇ sin(𝛽) (2) 

 𝑀𝑍 = 𝐼𝑍𝛹̈ (3) 

 
Where, m is the vehicle’s mass, v is the velocity of the center of gravity COG of the vehicle, β 

is the side-slip angle, ψ is the yaw angle, IZ is the moment of inertia of the vehicle around the z axis. 
On the other side of the equations, there are forces acting on the COG of the vehicle along with x (FX) 
and y (FY) axes and the moment acting around the z axis (MZ). 

The resulting system of nonlinear differential equations describing the steering angle projection 
and vehicle dynamics can be written as follows:  

𝛽̇ = −𝜓̇ +
1

𝑚𝑣
(𝐹𝑦 𝑐𝑜𝑠(𝛽) − 𝐹𝑥 𝑠𝑖𝑛(𝛽)) (4) 

𝑣̇ =
1

𝑚
(𝐹𝑦 𝑠𝑖𝑛(𝛽) + 𝐹𝑥 𝑐𝑜𝑠(𝛽)) (5) 

𝜓̈ =
1

𝐼𝑧
𝑀𝑧 (6) 

 
For this system sum of forces acting on vehicle in each direction can be derivated as: 

𝐹𝑥 = 𝐹𝑥𝑓 
cos(𝛿𝑓) − 𝐹𝑦𝑓 

sin(𝛿𝑓) + 𝐹𝑥𝑟 
cos(𝛿𝑟) − 𝐹𝑦𝑟 

sin(𝛿𝑟)   (7) 

𝐹𝑦 = 𝐹𝑥𝑓 
sin(𝛿𝑃) + 𝐹𝑦𝑓 

cos(𝛿𝑓) + 𝐹𝑥𝑟 
sin(𝛿𝑟) + 𝐹𝑦𝑟 

cos(𝛿𝑟) (8) 

𝑀𝑧 = 𝑙𝑓(𝐹𝑥𝑓 
sin(𝛿𝑓) + 𝐹𝑦𝑓 

cos(𝛿𝑓)) − 𝑙𝑟(𝐹𝑥𝑟 
sin(𝛿𝑟) + 𝐹𝑦𝑟 

cos(𝛿𝑟)) (9) 

 
Where δf , δr are steering angles of the front and the rear wheel, lf , lr is the distance from the 

vehicle’s COG to the front and rear axle. Forces FYf , FYr, FXf , and FXr are forces acting on tires. 

The tire dynamics is described by famous tire model Pacejka Magic formula, which can be 
used for estimation not only the lateral and longitudinal forces’ impact on a tire, but also all the torques 
acting on a wheel around all axis. It has a straightforward calculation, and the same formula is used to 
estimate all the forces and torques using different sets of coefficients. The general Simplified Pacejka 
Magic formula has the following equation:  

𝐹 = 𝐷𝐹𝑍sin (𝐶 𝑎𝑟𝑐𝑡𝑔(𝐵𝛼 − 𝐸(𝐵𝛼 − 𝑎𝑟𝑐𝑡𝑔(𝐵𝛼)))) (10) 

Where D, C, B, and E is the set of shaping coefficients, FZ is a wheel-load and α is tire side slip 

angle.  

All these equation were implemented in single track Simulink model to verify performance of 

the derivated vehicle model. 

 

B  Twin track model derivation 

 

For twin track model, in our previous work with Račkay [10], we developed Efremous single 

track model to cover all four wheels of vehicle. This model is based on the same three equations 

motion (1), (2) and (3), however in equation of acting forces (7), (8) and (9) we expand wheels ele-

ments from front f and rear r wheel to front right fr, front left fl and rear right rr and left rl wheels to 

cover remain dynamics. Expanded equations are in form: 
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 𝐹𝑥 =  𝐹𝑥𝑃𝑃

cos(𝛿𝑃𝑃) + 𝐹𝑥𝐿𝑃
cos(𝛿𝐿𝑃) + 𝐹𝑥𝑃𝑍

cos(𝛿𝑃𝑍) + 𝐹𝑥𝐿𝑍
cos(𝛿𝐿𝑍)

−   𝐹𝑦𝑃𝑃
sin(𝛿𝑃𝑃) − 𝐹𝑦𝐿𝑃

sin(𝛿𝐿𝑃)

−  𝐹𝑦𝑃𝑍
sin(𝛿𝑃𝑍) − 𝐹𝑦𝐿𝑍

sin(𝛿𝐿𝑍) 
(11) 

𝐹𝑦 = 𝐹𝑥𝑃𝑃
𝑠𝑖𝑛(𝛿𝑃𝑃) + 𝐹𝑥𝐿𝑃

𝑠𝑖𝑛(𝛿𝐿𝑃) + 𝐹𝑥𝑃𝑍
𝑠𝑖𝑛(𝛿𝑃𝑍) + 𝐹𝑥𝐿𝑍

𝑠𝑖𝑛(𝛿𝐿𝑍)

+ 𝐹𝑦𝑃𝑃
𝑐𝑜𝑠(𝛿𝑃𝑃) + 𝐹𝑦𝐿𝑃

𝑐𝑜𝑠(𝛿𝐿𝑃)

+ 𝐹𝑦𝑃𝑍
𝑐𝑜𝑠(𝛿𝑃𝑍) + 𝐹𝑦𝐿𝑍

𝑐𝑜𝑠(𝛿𝐿𝑍) 
(12) 

𝑀𝑧 = 𝑙𝑃{𝐹𝑥𝑃𝑃
𝑠𝑖𝑛(𝛿𝑃𝑃) + 𝐹𝑦𝑃𝑃

𝑐𝑜𝑠(𝛿𝑃𝑃) + 𝐹𝑥𝐿𝑃
𝑠𝑖𝑛(𝛿𝐿𝑃)

+ 𝐹𝑦𝐿𝑃
𝑐𝑜𝑠(𝛿𝐿𝑃)} 

− 𝑙𝑍{𝐹𝑥𝑃𝑍
𝑠𝑖𝑛(𝛿𝑃𝑍) + 𝐹𝑦𝑃𝑍

𝑐𝑜𝑠(𝛿𝑃𝑍)

+ 𝐹𝑥𝐿𝑍
𝑠𝑖𝑛(𝛿𝐿𝑍) + 𝐹𝑦𝐿𝑍

𝑐𝑜𝑠(𝛿𝐿𝑍)}

+ 𝑏𝑃{𝐹𝑥𝑃𝑃
𝑐𝑜𝑠(𝛿𝑃𝑃) − 𝐹𝑦𝑃𝑃

𝑠𝑖𝑛(𝛿𝑃𝑃)

+ 𝐹𝑥𝑃𝑍
𝑐𝑜𝑠(𝛿𝑃𝑍) − 𝐹𝑦𝑃𝑍

𝑠𝑖𝑛(𝛿𝑃𝑍)}

− 𝑏𝐿{𝐹𝑥𝐿𝑃
𝑐𝑜𝑠(𝛿𝐿𝑃) − 𝐹𝑦𝐿𝑃

𝑠𝑖𝑛(𝛿𝐿𝑃)

+ 𝐹𝑥𝐿𝑍
𝑐𝑜𝑠(𝛿𝐿𝑍) − 𝐹𝑦𝐿𝑍

𝑠𝑖𝑛(𝛿𝐿𝑍)} 

(13) 

 

Again all these equation were implemented in twin track Simulink model to verify performance 

of the derivated vehicle model. 

 

 

3  Vehicle Model Identification 
 

Vehicle model identification is an alternative process to model derivation, where you identify 

models with different representation from measured data. It is recommended to start by estimating the 

parameters of simpler models structures and if the model performance is poor, you gradually increase 

the complexity of the model structure. Ultimately, you choose the simplest model that best describes 

the dynamics of your system.  

Vehicle itself is a complex systems with multiple inputs and multiple outputs (MIMO) and 

such systems are often more challenging to model because of couplings between several inputs and 

outputs. MIMO models are often covered via state-space representations, since the model structure 

complexity is easier to deal with [11]. State-space model use state variables to describe a system by a 

set of first-order differential or difference equations, rather than by one or more nth-order differential 

or difference equations. The general state-space description has the following form: 

 
 𝑥̇ = 𝐴𝑥 + 𝐵𝑢 (14) 

 𝑦 = 𝐶𝑥 + 𝐷𝑢 (15) 

 

(14) is called state equation with state vector x, (15) is output equation, u is input vector, y is output 

vector, coefficient A is system matrix, B is control input matrix, C is output matrix and D is feedfor-

ward matrix. 

The state-space model structure is a good choice for quick estimation because it requires only 

one user input, the model order, n. In Matlab, model identification is supported in system identification 

toolbox [11] with user-friendly GUI.  

In this work we identified five state space models of 3rd, 4th, 5th, 6th and 7th model order from 

measured experiments.  
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4  Experiments 
 

For experiments we used conventional vehicle with front wheel drive, equipped with multiple 

sensors. For position measurements was used self-build RTK GNSS receivers witch absolute accuracy 

of approx. 20mm, attached on each axle. We modified receiver’s chips to be able to perform measure-

ment at 20Hz frequency, what is in navigation systems pretty high performance. We also used a 9 

DOF inertial measurement unit from XSENSE. As a vehicle output we measured accelerations and 

angular velocities in each directions witch frequency of 100 Hz. Position of used sensors is shown at 

following pictures: 
 

 

 

 

 

 

 

 

 

 

 

 

Fig.2. Position of GNSS antennas (Top), position of inertial measurement unit (Bottom). 

 

In experiments we also performed a reading of CAN Bus of vehicle. It required a small inter-

vention to vehicle’s electric wiring, because a Volkswagen concern cars have switchable CAN bus 

on OBD2 connector, which means that it is not possible to read any data directly from it, because it 

requires a data polling from CAN Bus gateway. So we connected directly on CAN BUS wires in 

dashboard connectors and soldered wires to them. For data logging we used a self-build control unit 

with CAN transceiver with C++ library build for parse all data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. Trajectory of constant steer maneuver for multiple steering angles. 
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As experiments we performed a three different test maneuvers. First we performed a constant 

steer drive for different steering wheel angles at about 6 km/h, shown in (Fig.3). From trajectory of 

this maneuver we measured the real cornering radius for each steering wheel angle and from Acker-

man geometry we calculated actual steering angles of the wheels. Then by polynomial regression we 

identified equation of steering wheel factor characteristic. 

Next we performed a step steer maneuver (Fig. 4), where we accelerate with straight wheels 

from rest to about 30km/h and then applied a steering step to minus 15 degree. Data from this ma-

neuver we used for model identification in MATLAB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4. Trajectory of step steer maneuver. 

 

Finally a third maneuver was single line change (Fig. 5), where we accelerate with straight 

wheels from rest to about 60km/h and the applied a minus 7degree input and immediately changed 

it to plus 7degree and then back to straight wheel. Data from this maneuver we used for verification 

of simulated models outputs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5. Trajectory of single line change maneuver. 
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5  Simulation 
 

To verify derivated and identified vehicle models, we have simulated data from single line 

change experiment as test maneuver in MATLAB, to simulate the dynamic responses of models. The 

aim of this simulation is to verify the accuracy of lateral and longitudinal motion of models.  

We simulated this maneuver with single track, twin track and identified state space models 

with 3rd – 7th order. Results of line change simulations are shown in the following figures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6. Comparison between measured vehicle speed (Left) and yaw rate (Right) 

and simulated results from identified State Space model with 3rd order SS3(1st row), 4th order 

SS4(2nd row), 5th order SS5(3rd row), 6th order SS6(4th row) and 7th order SS7(5th row). 
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Fig.7. Comparison between measured vehicle speed (Top) and yaw rate (Bottom) 

and simulated results from single and twin track model and SS6. 

 

From (Fig.6) with results of simulation of all identified models we can see that models with 

3rd and 4th order (SS3, SS4) has a poor results, where coefficient of determination was negative 

number in both simulated outputs. Models with 5th, 6th and 7th order has significantly better results 

at simulated Speed, where model SS6 has Kd = 91.82%, what can be considered as great result. Also 

these models has slightly better result in simulated Yaw rate, however cause slight oscillations. In 

overall, from these results we can consider SS6 as a best identified state space vehicle model. 

In (Fig.7) we can see comparison of model SS6, single and twin track model with actual 

measured data. From results we can see that derivated single and twin track model can even with 

many considered simplification pretty accurately represent longitudinal and lateral motion of vehicle. 

Coefficient of determination in simulated Speed for both models is approximately 99% and simulated 

Yaw rate is 85.05% for twin track and 93.54% for single track model.  

 

 

6  Conclusion 
 

The paper presents two most common vehicle model design approaches – a theoretical deri-

vation based on first principles, and experimental identification, and their simulation-based compar-

ison. In the design of any vehicle model, the most important objective is to obtain desired accuracy 

considering applied simplifications. Effectiveness accuracy of longitudinal and lateral motion of the 

developed models has been verified via line change simulations.  

Based on simulation results, we can conclude that the developed single track and twin track 

vehicle models work as expected despite having used several simplifications in the theoretical back-

ground. The developed models are now ready to be implemented in the control system of the racing 

car of the Slovak formula student team STUBA Green Team. 
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